3p^2+10p-120=0

Simple and best practice solution for 3p^2+10p-120=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p^2+10p-120=0 equation:


Simplifying
3p2 + 10p + -120 = 0

Reorder the terms:
-120 + 10p + 3p2 = 0

Solving
-120 + 10p + 3p2 = 0

Solving for variable 'p'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-40 + 3.333333333p + p2 = 0

Move the constant term to the right:

Add '40' to each side of the equation.
-40 + 3.333333333p + 40 + p2 = 0 + 40

Reorder the terms:
-40 + 40 + 3.333333333p + p2 = 0 + 40

Combine like terms: -40 + 40 = 0
0 + 3.333333333p + p2 = 0 + 40
3.333333333p + p2 = 0 + 40

Combine like terms: 0 + 40 = 40
3.333333333p + p2 = 40

The p term is 3.333333333p.  Take half its coefficient (1.666666667).
Square it (2.777777779) and add it to both sides.

Add '2.777777779' to each side of the equation.
3.333333333p + 2.777777779 + p2 = 40 + 2.777777779

Reorder the terms:
2.777777779 + 3.333333333p + p2 = 40 + 2.777777779

Combine like terms: 40 + 2.777777779 = 42.777777779
2.777777779 + 3.333333333p + p2 = 42.777777779

Factor a perfect square on the left side:
(p + 1.666666667)(p + 1.666666667) = 42.777777779

Calculate the square root of the right side: 6.54047229

Break this problem into two subproblems by setting 
(p + 1.666666667) equal to 6.54047229 and -6.54047229.

Subproblem 1

p + 1.666666667 = 6.54047229 Simplifying p + 1.666666667 = 6.54047229 Reorder the terms: 1.666666667 + p = 6.54047229 Solving 1.666666667 + p = 6.54047229 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + p = 6.54047229 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + p = 6.54047229 + -1.666666667 p = 6.54047229 + -1.666666667 Combine like terms: 6.54047229 + -1.666666667 = 4.873805623 p = 4.873805623 Simplifying p = 4.873805623

Subproblem 2

p + 1.666666667 = -6.54047229 Simplifying p + 1.666666667 = -6.54047229 Reorder the terms: 1.666666667 + p = -6.54047229 Solving 1.666666667 + p = -6.54047229 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + p = -6.54047229 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + p = -6.54047229 + -1.666666667 p = -6.54047229 + -1.666666667 Combine like terms: -6.54047229 + -1.666666667 = -8.207138957 p = -8.207138957 Simplifying p = -8.207138957

Solution

The solution to the problem is based on the solutions from the subproblems. p = {4.873805623, -8.207138957}

See similar equations:

| 5x-20x=0 | | 2x+.25y=11 | | nx+x=r | | v^3+3v^2=0 | | -3=2y | | 2x+3y+3x-y-2=80 | | 15x^3+39x^2-18x=0 | | 18a^3+51a^2-42a= | | 9y-4(y+4)=40 | | 3(x-5)+9=3 | | 4x+6y-24=0 | | x^2-2*abs(x)-15=0 | | 7w^2+26w+15= | | 0.02x+0.10(100-x)=0.42x | | 4(2x-3)+8(x-4)=2(2x+6)fraction | | 72=9-3q | | [t-16]=20 | | -4x-7x=-121 | | 0.16y+0.05(y+3000)=2040 | | (2x^1)+2x+(2x^1)+(2x^2)+(2x^3)=120 | | -3q+15=-27 | | -8x-26=-5x-14 | | 0.12y+0.04(y+8000)=1600 | | 175=3x+35 | | 4x^3=3x | | 2.33x^2+x^2=1156 | | 11(4p+4)-4p=4(7p+7) | | -122/-28= | | 12x^3+44x^2-16x=0 | | 7a-21=6a-12 | | 23+4y-7=13y-12-2y | | x^2-3.5x-0.5= |

Equations solver categories